TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll D
X [ESTADO QUÂNTICO]
EM :
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Formulação de Feynman da mecânica quântica
A formulação de Feynman da mecânica quântica ou formulação de integrais de caminho da mecânica quântica é uma descrição da teoria quântica que generaliza a ação da mecânica clássica. Ela substitui a noção clássica de uma única trajetória para um sistema por uma soma, ou integral funcional, por meio de uma infinidade de trajetórias possíveis para calcular a amplitude quântica.
A ideia básica da formulação de integral de caminho é originária de Norbert Wiener, que apresentou o processo de Wiener para a solucionar problemas de difusão e movimento Browniano.[1] Esta idéia foi estendida para o uso do Lagrangiana na mecânica quântica por P. A. M. Dirac em seu artigo de 1933[2] . O método completo foi desenvolvido em 1948 por Richard Feynman. Algumas preliminares foram trabalhados anteriormente, no curso de sua tese de doutorado no trabalho de John Archibald Wheeler. A motivação original surgiu da aspiração de obter uma formulação da mecânica quântica para a teoria de teoria de ação à distância de Wheeler e Feynman usando uma Lagrangeana (ao invés de um Hamiltoniano) como ponto de partida.
Esta formulação tem se provado fundamental para o desenvolvimento posterior da física teórica, por ser manifestamente simétrica entre o tempo e o espaço. Ao contrário dos métodos anteriores, a formulação de integral de caminho-integral permite facilmente a mudança de coordenadas entre descrições canônicas diferentes do mesmo sistema quântico.
A formulação de integral de caminho também relaciona processos quânticos e estocásticos, fornecendo a base para a grande síntese, na década de 1970 que unificou a teoria quântica de campos com a teoria de campos estatísticos de campo flutuante perto de uma transição de fase de segunda ordem. A equação de Schrödinger é uma equação de difusão com uma constante de difusão imaginária, sendo a integral de caminho uma continuação analítica do método para a soma de todos as possíveis caminhadas aleatórias. Por esta razão integrais de caminho foram utilizados no estudo de difusão e movimento Browniano pouco antes de serem introduzidos na mecânica quântica.[3]
A formulação de Feynman da mecânica quântica ou formulação de integrais de caminho da mecânica quântica é uma descrição da teoria quântica que generaliza a ação da mecânica clássica. Ela substitui a noção clássica de uma única trajetória para um sistema por uma soma, ou integral funcional, por meio de uma infinidade de trajetórias possíveis para calcular a amplitude quântica.
A ideia básica da formulação de integral de caminho é originária de Norbert Wiener, que apresentou o processo de Wiener para a solucionar problemas de difusão e movimento Browniano.[1] Esta idéia foi estendida para o uso do Lagrangiana na mecânica quântica por P. A. M. Dirac em seu artigo de 1933[2] . O método completo foi desenvolvido em 1948 por Richard Feynman. Algumas preliminares foram trabalhados anteriormente, no curso de sua tese de doutorado no trabalho de John Archibald Wheeler. A motivação original surgiu da aspiração de obter uma formulação da mecânica quântica para a teoria de teoria de ação à distância de Wheeler e Feynman usando uma Lagrangeana (ao invés de um Hamiltoniano) como ponto de partida.
Esta formulação tem se provado fundamental para o desenvolvimento posterior da física teórica, por ser manifestamente simétrica entre o tempo e o espaço. Ao contrário dos métodos anteriores, a formulação de integral de caminho-integral permite facilmente a mudança de coordenadas entre descrições canônicas diferentes do mesmo sistema quântico.
A formulação de integral de caminho também relaciona processos quânticos e estocásticos, fornecendo a base para a grande síntese, na década de 1970 que unificou a teoria quântica de campos com a teoria de campos estatísticos de campo flutuante perto de uma transição de fase de segunda ordem. A equação de Schrödinger é uma equação de difusão com uma constante de difusão imaginária, sendo a integral de caminho uma continuação analítica do método para a soma de todos as possíveis caminhadas aleatórias. Por esta razão integrais de caminho foram utilizados no estudo de difusão e movimento Browniano pouco antes de serem introduzidos na mecânica quântica.[3]
Princípio da ação quântica
Na mecânica quântica, assim como na mecânica clássica, o Hamiltoniano é o gerador de translações temporais. Isto significa que o estado em um tempo posterior difere do estado atual pela atuação do operador Hamiltoniano (multiplicado pelo negativo unidade imaginária, −i). Para os estados com uma determinada energia, esta é uma instrução de relação de De Broglie entre a freqüência e a energia, e a relação geral é consistente com o que e o princípio da superposição.
No entanto, na mecânica clássica o Hamiltoniano é derivado a partir de um Lagrangeana, que é uma quantidade mais fundamental em relação à relatividade especial. O Hamiltoniano indica como o movimento se desenvolve no tempo, mas o tempo é diferente em diferentes sistemas de referência. Assim, o Hamiltoniano é diferente em referenciais diferentes e este tipo de simetria não é aparente na formulação original da mecânica quântica.
O hamiltoniano é uma função da posição e momento no tempo t, determinando a posição e o momento no tempo (t+ε). A Lagrangiana é uma função das posição em t e (t+ε) (para um intervalo de tempo infinitesimal, a velocidade é medida é a velicidade instantânea, tornando a Lagrangeana como função da posição e da velocidade). A relação entre os dois é por uma transformação de Legendre e a condição que determina as equações de movimento (ou equações de Euler–Lagrange) é a extremização da ação.
Na mecânica quântica, uma transformação de Legendre é difícil de interpretar uma vez que o movimento não é dado por uma trajetória definida. Na mecânica clássica, a discretização temporal da transformação de Legendre torna-se:
- X
Na mecânica quântica, assim como na mecânica clássica, o Hamiltoniano é o gerador de translações temporais. Isto significa que o estado em um tempo posterior difere do estado atual pela atuação do operador Hamiltoniano (multiplicado pelo negativo unidade imaginária, −i). Para os estados com uma determinada energia, esta é uma instrução de relação de De Broglie entre a freqüência e a energia, e a relação geral é consistente com o que e o princípio da superposição.
No entanto, na mecânica clássica o Hamiltoniano é derivado a partir de um Lagrangeana, que é uma quantidade mais fundamental em relação à relatividade especial. O Hamiltoniano indica como o movimento se desenvolve no tempo, mas o tempo é diferente em diferentes sistemas de referência. Assim, o Hamiltoniano é diferente em referenciais diferentes e este tipo de simetria não é aparente na formulação original da mecânica quântica.
O hamiltoniano é uma função da posição e momento no tempo t, determinando a posição e o momento no tempo (t+ε). A Lagrangiana é uma função das posição em t e (t+ε) (para um intervalo de tempo infinitesimal, a velocidade é medida é a velicidade instantânea, tornando a Lagrangeana como função da posição e da velocidade). A relação entre os dois é por uma transformação de Legendre e a condição que determina as equações de movimento (ou equações de Euler–Lagrange) é a extremização da ação.
Na mecânica quântica, uma transformação de Legendre é difícil de interpretar uma vez que o movimento não é dado por uma trajetória definida. Na mecânica clássica, a discretização temporal da transformação de Legendre torna-se:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e
- X
e
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde a derivada parcial com relação a mantém q(t + ε) constante. A inversa da transformação de Legendre é:
- X
onde a derivada parcial com relação a mantém q(t + ε) constante. A inversa da transformação de Legendre é:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde
- X
onde
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
tomando q fixo.
tomando q fixo.
Teoria do absorvedor de Wheeler e Feynman
A teoria do absorvedor de Wheeler e Feynman, também chamada teoria time-symmetric, teoria do meio absorvente[1] ou teoria de ação à distância de Wheeler e Feynman,[2]cujos criadores foram os físicos Richard Feynman e John Archibald Wheeler, é uma interpretação da eletrodinâmica que parte da ideia de que uma solução para as equações de campo eletromagnético tem que ser simétrica em relação ao inverso do tempo, tal como as próprias equações de campo. A razão disso é principalmente a importância da simetria T na Física. De fato não há razão aparente para que tal simetria deva ser quebrada e, portanto, uma direção do tempo não tem privilégios em relação à outra. Assim, uma teoria que respeite essa simetria parece mais elegante do que teorias em que se tem que eleger arbitrariamente uma direção do tempo como preferida em relação às demais.
Outra ideia-chave reminiscente do princípio de Mach e atribuída a Hugo Tetrode é a de que partículas elementares atuam sobre outras partículas elementares, que não elas próprias. Isso imediatamente remove o problema das autoenergias.
A teoria do absorvedor de Wheeler e Feynman, também chamada teoria time-symmetric, teoria do meio absorvente[1] ou teoria de ação à distância de Wheeler e Feynman,[2]cujos criadores foram os físicos Richard Feynman e John Archibald Wheeler, é uma interpretação da eletrodinâmica que parte da ideia de que uma solução para as equações de campo eletromagnético tem que ser simétrica em relação ao inverso do tempo, tal como as próprias equações de campo. A razão disso é principalmente a importância da simetria T na Física. De fato não há razão aparente para que tal simetria deva ser quebrada e, portanto, uma direção do tempo não tem privilégios em relação à outra. Assim, uma teoria que respeite essa simetria parece mais elegante do que teorias em que se tem que eleger arbitrariamente uma direção do tempo como preferida em relação às demais.
Outra ideia-chave reminiscente do princípio de Mach e atribuída a Hugo Tetrode é a de que partículas elementares atuam sobre outras partículas elementares, que não elas próprias. Isso imediatamente remove o problema das autoenergias.
Resolução de problema de causalidade
T.C. Scott e R.A. Moore demonstraram que a aparente falta de causalidade, causada pela presença de avançado potenciaus de Liénard-Wiechert na sua formulação original pode ser removido através da fusão a sua teoria dentro de uma formulação totalmente relativista eletrodinâmica muitos de corpo, em termos de potenciais retardados apenas sem as complicações de a parte de absorção da teoria.[3][4] Se considerarmos a Lagrangiana agindo sobre a partícula um dos campos de tempo simétricos gerados pela partícula 2, temos:
- X
T.C. Scott e R.A. Moore demonstraram que a aparente falta de causalidade, causada pela presença de avançado potenciaus de Liénard-Wiechert na sua formulação original pode ser removido através da fusão a sua teoria dentro de uma formulação totalmente relativista eletrodinâmica muitos de corpo, em termos de potenciais retardados apenas sem as complicações de a parte de absorção da teoria.[3][4] Se considerarmos a Lagrangiana agindo sobre a partícula um dos campos de tempo simétricos gerados pela partícula 2, temos:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é a energia cinética relativística funcional de partícula i, e, e
X
onde é a energia cinética relativística funcional de partícula i, e, e
X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
são, respectivamente, os potenciais retardados e avançado de Liénard-Wiechertagindo em partícula j dos campos eletromagnéticos gerados por partícula relativista i. Por outro lado, a lagrangiana correspondente para partícula 2 fez sinal por partícula 1 é:
- X
são, respectivamente, os potenciais retardados e avançado de Liénard-Wiechertagindo em partícula j dos campos eletromagnéticos gerados por partícula relativista i. Por outro lado, a lagrangiana correspondente para partícula 2 fez sinal por partícula 1 é:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Foi inicialmente demonstrado com matemática experimental através de matemática simbólica[5] e em seguida demonstrado matematicamente[6] de que a diferença entre um potencial retardado de partícula i agir sobre partícula j, e o potencial avançado de j partícula agindo sobre a partícula i é simplesmente um tempo total derivado :
- X
Foi inicialmente demonstrado com matemática experimental através de matemática simbólica[5] e em seguida demonstrado matematicamente[6] de que a diferença entre um potencial retardado de partícula i agir sobre partícula j, e o potencial avançado de j partícula agindo sobre a partícula i é simplesmente um tempo total derivado :
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
ou uma "divergência", como é chamado no cálculo das variações , porque em nada contribui para as equações de Euler-Lagrange. Assim, através da adição da quantidade adequada de derivados de tempo total para estes lagrangianas, os potenciais avançados podem ser eliminados. O Lagrangeano para o problema dos N-Corpos é, portanto:
- X
ou uma "divergência", como é chamado no cálculo das variações , porque em nada contribui para as equações de Euler-Lagrange. Assim, através da adição da quantidade adequada de derivados de tempo total para estes lagrangianas, os potenciais avançados podem ser eliminados. O Lagrangeano para o problema dos N-Corpos é, portanto:
- X
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
em que os potenciais avançados não fazem nenhuma aparência. Além disso, esta apresenta simetria Lagrangiana partícula-partícula.[3] Para este Lagrangiana gerará exactamente as mesmas equações do movimento de e e, conseqüentemente, a física do problema é preservada. Assim, do ponto de vista de um observador do lado de fora da visualização relativista problema n-corpo , tudo é causal. No entanto, se isolar as forças que atuam sobre um corpo particular, o potencial avançado faz a sua aparição. Esta reformulação do problema vem com um preço: o N-corpo Lagrangiana depende de todas as derivadas temporais das curvas traçadas por todas as partículas ou seja, o Lagrangiano é a ordem infinita. No entanto, sob simetria troca de partículas totais e Generalized Momenta (resultante da definição de uma ordem de Lagrange infinito) são conservados. O recurso que pode parecer uma não-local é que o princípio de Hamilton é aplicada a um sistema de muitas partículas relativista como um todo, mas isso é o máximo que se pode ir com a teoria clássica (não da mecânica quântica). No entanto, muito progresso foi feito em examinar a questão não resolvida da quantização da teoria.[7][8][9] As soluções numéricas para o problema clássico também foram encontradas.[10] Note também que esta formulação recupera a lagrangiana de Darwin de que a equação Breit foi originalmente derivada, mas sem os termos dissipativos. [4] Isso garante acordo com a teoria ea experiência até, mas não incluindo o desvio de Lamb. Uma vantagem importante de sua abordagem é a formulação de uma canônica impulso generalizado totalmente preservado, tal como apresentado em artigo de revisão abrangente à luz do paradoxo EPR.[11]
em que os potenciais avançados não fazem nenhuma aparência. Além disso, esta apresenta simetria Lagrangiana partícula-partícula.[3] Para este Lagrangiana gerará exactamente as mesmas equações do movimento de e e, conseqüentemente, a física do problema é preservada. Assim, do ponto de vista de um observador do lado de fora da visualização relativista problema n-corpo , tudo é causal. No entanto, se isolar as forças que atuam sobre um corpo particular, o potencial avançado faz a sua aparição. Esta reformulação do problema vem com um preço: o N-corpo Lagrangiana depende de todas as derivadas temporais das curvas traçadas por todas as partículas ou seja, o Lagrangiano é a ordem infinita. No entanto, sob simetria troca de partículas totais e Generalized Momenta (resultante da definição de uma ordem de Lagrange infinito) são conservados. O recurso que pode parecer uma não-local é que o princípio de Hamilton é aplicada a um sistema de muitas partículas relativista como um todo, mas isso é o máximo que se pode ir com a teoria clássica (não da mecânica quântica). No entanto, muito progresso foi feito em examinar a questão não resolvida da quantização da teoria.[7][8][9] As soluções numéricas para o problema clássico também foram encontradas.[10] Note também que esta formulação recupera a lagrangiana de Darwin de que a equação Breit foi originalmente derivada, mas sem os termos dissipativos. [4] Isso garante acordo com a teoria ea experiência até, mas não incluindo o desvio de Lamb. Uma vantagem importante de sua abordagem é a formulação de uma canônica impulso generalizado totalmente preservado, tal como apresentado em artigo de revisão abrangente à luz do paradoxo EPR.[11]
Comentários
Postar um comentário